(onf- 890245 --1

LA-UR -83-3290 LA-UR--8§3-3290

DEG4 003783

Almos Natona! Labotatory is opersted by 1he Unweraity of Californee for the Unned Siates Depariment of Enerpy untar contract W.7405.ENG. 3¢
L“ u

nre: RECOVER IT YOURSELF WITH USER LOGGING

autions) DIAME WEILIR

: SEDPENCE
suemitTep 1o HEWLETT-PACKARD INTERNATIONAL USERS GROUP COMFERENCE
ANAHEIM, CALIFORNIA, ¥ebruary 27 - March 2, 1944

DISCLAIMER

Thin report was prepured as an uccount of work spoanod by an ugency of the United States
Gnrvernment. Notther the United States Government nor any agency thereof, nor any of their
employeea, makics any warranly, express or implied, or smaumes uny loga) liability or responai-
bility for the accuracy, completeness, or uscfulness of any information, apparatus, produci, or
provess disclosed, or represcats that ita uxe woukd net infringe privately owned rights, Refer-
ence herein 10 any speaific commercinl product, pricess, of srrvice hy trade name, Irademark,
manufecturer, v otherwine does not neceasarily consitute or imply its endorsement, recom-
mendation, o (wvaring by the United Sistes Government o any agency thereol, The viewa

amt upimonn of authers exprensed hercin do oo nevensatily state or reflect thume of the
United Statea Government or any agency theread

By accopiance of thig articia 1he publisher racngnizes that the U S Government retaina a nonancluaive toyaity-fres hicense to pubish o reproduce
nMent putpeeal
this coMubuton O to pHOw O 10 B 80, for US Oover Ere
:I\.o.::':l.r’m'::::l'mnu Laboratory requesis 1hat the publisher igealify thw articia 8s work performed unde' the suspices of the U § Depsniment of (']

el
m,&‘ Ns'-.mmn:lm TR L LAE TR
Los Alamos s

PORM hy 800 M1
1 W0 NN i

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

RECOVER IT YOURSELF WITH USER LOGGING

IMAGE Togging is a nice feature except it only recovers IMAGE transactions.
What can you do if you update multiple file types with a single transaction and
you need a logging system? User logging 1s your answer. By using this facility
and the recoverable programming technique described you can recover it yourself
with the same program that updates your filesets interactively. This paper will
address the recoverable program structure, the user logging commands, and some
special operational considerations of user logging.

The recoverable pitogram structure 1s fairly simple. The screen image is
written into the log file for each successful transaction. When you need to
recover your files, the main program is run with a parameter that indicates re-
covery processing. For recovery procescing, the terminal and formfile are not
opened. Rather, the subprograms read the log file and process the transactions
exactly in the same way as it would interactively with full editing and updating
as needed to all file types. There is no write to a terminal at the end of the
transaction; instead the next log record is read. If an error is detected
Aduring the edit phase, the recovery process aborts.

RECOVER IT YOURSELF WITH USER LOGGING

by: Diane Weir

Los Alamos Nativnal Laboratory
?.0. BOX 1663
MAIL STOP P909
Los Alamos, New Mexico 87745

INTRODUCTION

IMAGE logging is a good product that has proved to be an effective and
accurate way to save interactive transactions for recovery and audit purposes.
There is one shortcoming with the product in that it only logs transactions
within the IMAGE domain, Some applications require that KSAM and MPE files be
updatec in an on-line system, How can these files be recovered? One answer is
to use a recoverable program structure that not only posts the interactijve
transactions, but re-overs them as well. The user logging facility is used to
store the successful transactions to either tape or disc. This paper will
discuss the recoverable program structure and the user logging subsystem.

LOGGING AND RECOVERING TRANSACTIONS

THE RECOVERABLE PROGRAM STRUCTURE

This program structure was developed because there was a need to save all
update trarsactions for an on-line payroll system that used IMAGE, KSAM, and
MPE files. A record is written to the log file for every successful update on
the file sets. The record logged looks just like the screen’s image that caused
the update. The on-line system can be run in interactive mode vsing V/3000
with ueers at terminals entering their transactions, or in recovery mode, In
recovery mode the log file is read instead of the terminal, The edits are re-
done to ‘nsure that the data files were properly restored, then the transactions
are postec to the backup copias of the files. If any of the edits fail the
program abortsj; the recovery is probably being run against the wrong set of
files or the date/time parameters are wrong. The loq file contains before and
after images of the screen for audit reporting purposes; for recovery only the
af ter images are reposted on the change transactions. The deletes contain the
before image o the screen prior to the deletion, the adds, the after image.

THE USER LOG RECORD FORMATS 2

Although the logging subsystem uses several record types, the records to
concern yourself with are the user records, coded two and seven. The first nine
words of the 128 word record are reserved for the logqing subsystem. The first
two words contain the record number, the next, the checksum. The fourth word is
important in that it contains the record code. Words five through seven contain
the date and time. The eighth word holds the log id with the ninth word used to
hold the length of the user area. The user area follows for the next 119 words.
Records are added to the log file via the WRITELOG intrinsicr, The file is in
128 word ASCII format that, through the use of the lenath parameter, allows
transactions of various lengths to be logged. If the write to the log file has
a user area of 119 words or less, the transaction will physinally be placed into
one 2-recerd. If the 119 word limitation is excended, us many 7-records as
needed to complete the operation are written. For example, if the length oy the
user area is 408 words, one will see one 2-record and three 7-records on the log
for the request. This gives the user the flexibility needed for various uses
of the log files.

When desianina the application the 2-record was definad tc contain certain

control ond audit information. In COBOL syntax the log records were defined as
follows,

01 LOG-RECD.
05 LOG-SYSTEM-ARE:,

10 FILLER PIC X(6).
10 LOG-REC-CD PIC 9(4) CoMP.
10 FILLER PIC X(10).
05 LOG-USER-AREA.
10 LOG-USER PIC X(8).
10 LOG-SCREEN-CD PIC XXX.
10 LOG-BEF-AFT PIC X.
10 LOG-ACTION PIC X,
10 LOG-DATE PIC §9(7) COP-3.
10 LOG-TIME PIC S9(3) COMP-3,

10 LOG-SCREEN-IMAGE PIC X(218).
65 LOG-CONT-AREA REDEFINES LOG-USER-AREA,
10 LOG-CONT-SCREEN PIC X(2308).

The LOG-SYSTEM-AREA is the nine word area reserved by the user loyging fecility,
The LNG-USER-AREA is the definiticn of the 2-recerd. It contains the user name
obtained from the WHO intrinsic, the application’s screer. code, a before/af ter
code, the screen’s action code, the posting date and time, followed by the first
218 characters of data. If a continuation record was needed the LOG-CONT-SCREEN
contains the 7-record’s data. The b2fore’after code is used primarily for audit
reporting. An add transaction will contain only the after record; a delete, the
before record. A change transaction will reflect both the before and after
states. The screen image is remainder of the data written to the log file,

THE MAIN PROGRAM

The on-line system contains & main menu program that prompts for passwords,
opens the database, terminal, und formfile, and displays the menu. The sub-
programs actually update the files. The menu’s furction is to control the flow
between the subprograms. The menu can be executed in interactive or recovery
mode. The main program knows if recovery or interactive mode is decired via the
use of run-time parameters. SW1 in COBOL was used if recovery moaoe was needed.
Thus to run the program interactively, simply ;RUN PAO0O1, to run for recovery,
sRUN PA0001 ; "PARM=%40000". The logic of the two modes is illustrated as follows.

INTERACTIVE MODE RECOVERY MODE

Turn echo off and ask for passwords Read the EDITOR file that has the from

Open the database date/time and to date/time for the

Turn #cho back on recovery process.

Call the WHO intrinsic te find the FOPEN the log file specifying an old,
user’s name. permaner.t file, opened for exclusive

Gain access to the logging facility via access.,

OPENLOG

Open the formfile. READ-LOOP

Open the terminal Add 1 to the record number.

Call FREADIIR to read the file sequen-

READ-1.00P tizlly.

Display the menu screen If the log recorc code is not a 2, skip

Read the menu the record.

Call the subprogram to service the Test the date/time in the log record to
request see that it fits the recovery para-
-or- meters.

Go to the EXIT-ROUTINE if F8 was If the log’s time is less thzn the
pressed. recovery time, read the next record,

Go to READ-LOOP 1f the log‘’s time is greater than the

recovery time, go to EXIT-ROUTINE,

Subtract 1 from the record number of
the log file

Call the appropriate subprogram.

When the subprcqram returns test the
returning screen code for the end-
-of-file flag, If it is not set,
subtract 1 from the record number and
Qo to READ-LOOP. If it is set go to
EXIT~ROUTINE,

EXIT--ROUTINE EXIT-ROUTINE
Close the terminal and formfile Close the log file via FCLOSE
Close the database and other files Close the database and othar files
Terminate the accecs to the loagging Stop run,

facility with CLOSELOG.
Stop run.,

When a system failure occurs in the middle of the day, the operator must
first restore the files from the latest full and partial backup sets. Then the
clate and time of the last backup tape is entered into an EDITOR file along with
the date and time of the system failure. This delimits the recovery process to
the time parameters saved in the log file’s 2-record. The operator then stops
the logging process with the :LOC console command,

The databese is opened for exclusive access while recovery is running., This
insures that no processes are using the database until recovery is completed.
The loq file is 2lso opened in exclusive mode as an extra safety measure, A
stop of the logging system forces all buffers to be flushed to their media so
the loq file should be as complete as possible. 1f loqging was not stopped
prior to recovery the exlusive open of the log file will fail. The log files is
then read using the FREADDIR call because the subprogqrams need to know where to
begin processing on the log file. The record number is reduced by one prior to
calling the subprogram so the subprogram can add one to the record number before
reading the log file. This keers the subprogram’s read loop consistent,

THE SUBPROGRAM

The subprogram’s structure is described below. In interactive mode the
screen is read and the data is edited. If the edits do not detect errors the
dutabase and other files are updated. For delete and add transactions, the
screen image is added to the log file via WRITELOG directly from the screen
image in working-storage. On chanqge transactions, the °"before" screen is re-
built and written to the log fi ° before the updated screen image is logged.
By comparing the "before" screen to the "after” screen on the audit report the
chanqes can be isolated, The logic for the subprograms is outlined below.

INTERACTIVE MODE RECOVERY MODE
READ-LOOP READ-(.00P
Kead screen (VREADFIELDS, Add 1 to record number, then FREADDIR
VUFIELDEDITS, the log file.
VGETBUFFER) Bypass any records whose code is not a 2

Test the "to date/time" against the rec-
overy parameters. |f the time has
expired or the end of file is found
return to the menu.

Sew if the screen belongs to this
subrrogram, if not return to the
main program.

See if the screen was too large to fit
fnto one log record. If so, cont-
inve reading until *he entire s-reen
is reassembled.

5

Edit th2 transaction Edat the transaction
(If errors perform USETERROR (If errors perform USETERROR)
then go to READ-LOOP)

Update the datasets and other files Update the datasets and other files

If add ¢ delete, write screen to log

If change, build "before” screen
write it to the log then
log the “after” screen.

Initialize screen for next trancaction.
Go to READ-LOOP Go to REA[-LOOP

VSETERROR ROUTINE
If orogram 1s 1n 1nteractive mode, call VSETERROR for the field,
else abort.

In recovery mode, the routine to edit the screen’s data and update the files
is the same routine performed when recovery 1s run, There are not two separate
pregrams to maintaln when changes occur to the edit or update Criter)a, The
same subprogram that updates the datasets, KSAM, and MPE fil®s interactively
also recovere those tvansactions. A word of caution. Since the edit routines
are performed for the recovery to insure data i1ntegrety, any alterations to the
ed:t criteri1a or the screer layout should be preceeded by s :STORE of the date-
bases and other files updated by the system.

There 15 no need to delimit the logical .ransactions by special records
Wwritten to the log file. IMAGE logging delimits transactions by DBRBEGIN and
DBEEND calls. This 18 te precern. any i1ncomplete updates from occurring. Tms 1s
not nee-'td 1n this type of structure. The screen 13 the logical transaction,
Ore screen may update a variety of files but since the screen is being recoverec
instead of the records. special ~ransaction delimiting records become unneces-
sary.

THE COMMON AREA

The cormon area of the on-line system ccntains the V/3000 area, the database
name, and the dsta needed for the logging and recovery. PP-USER comes from a
call to WHOU to determi..c the user "¢ name, PP-LOG-INDEX 18 the log i1ndex returued
from the call to OPENLOG. LOG-FILE-NWM is the fi e number for the loy file when
run for recovery; it 1s required to FREADDIR the log file. The PF-RZCOVER-FLG
1ngicates the moge, vecovery or i1nteractive, to the subprograms. PP-REC-NUM
ingicates where recovery i1t to begin on the log file., PP-SCREEN-CODE talls
the main progrum the next screen tc proces; or wheather the subdrogram reached
the end of fi1le or the time limit as exceeded. The -ecovery 1s terminated when
log file ends or the log record s date and time exceed PP-RECOVER-TO-TIME.

01 COMMON-AREA,
05 PF-D-BASE PIC X(8).
0% PP-USER PIC X(6),
05 PP-LOG-INDEX PIC S9(9, COMP,
05 PP-REVCOVER-FLG PIC S9(4: COMP,
05 PP-REC-NWM PIC S9(9) COMP,
05 PP-SCKEEN-CD PIC X(4).
05 PP-EOF-FLAG REDEFINLS PP-SCREEM-CD
PIC ~
05 PP-RECOVER-TO-TI
10 PP-T-DATE PIC 5.16).
10 PP-T-TIME PIC §9(4).
05 LOG~FILE-NUM PIC §914) COMP,
05 V-COM-AREA FIC X(102)._

TESTING CONSIDERATIONS 6

How is testing conducted on » logging system? Khen testing occurs against
a test catabase, the transactions should not be logged to the production log
file. Instead the transactions are logged to a test log file. The log file
identifier in main program is altered prior to the OPENLOC call. Also, the
recovery should be tested if the screen layout was altered. This mandates that
the FOPEN of the iog tile in recovery mode use tne file name of the test log
file, not the production loq file. Thic can be accomplished through a file
equation. Again the run parameter, SW2, was used to indicate whether testing
was occurring. To test interactively one would :RUN PAO0O1;PARM=%20000, for
testing recovery, :RUN PA0001 ; PARM=%60000.

THE USER LOGGING SUBSYSTEM
THE LOGGING PROCESS

The user logainq subsystem allows for one shared file buffer per lraging
process regardless of the number of users accessing the log file. Aw.teis
performed or a log file via the WRITELOG intrinsic., One may log to either tape
or disc. For disc logging, the log entries are loaded into the buffer area of
the loqaing data segment. The records are written to disc when the buffer area
becomes full or when certain intrinsicc such as FLUSHLOG, BEGINLOG, or ENDLOG
are called, Tape logging actually writes the log buffer to disc for a later
transfer to tape. Transfers to tape occur simultaneously with writes tc the
disc log file because the two steps are controlled by separate processes. The
rea~on for the two processes is $0 that the process that loads the buffer to
disc can continue without interruption. The process that writes the transaction
to tape can pause while a reel rewinds and another is mounted. This gives the
logaing process tne capability to continue without interruption at the end of
a tape volume.

IMAGE uses the user loqging subsystem to record updates to the databses
where logqing 1s enabled. The user logging facility was written by a team in the
MPE qroup to provide the framework for IMAGE logging. IMAGE records physical
records updated by DBPUT, DBUPDATE, and DBDELETE calls if the logging on that
database is active,

GETTING STARTED WITH USER LOGGING

Thie section will deal with the commands and utilities used for the logging
subsystem. All users accessing the user logging facility need to have logging,
or LG, capability, The systam manager needs to allocate LG capability to the
account, then the account manag2r can allocate .u capability to himself and to
the users accessing the interactive lugging system.

'HELLO MANAGER,SYS

tALTACCT PAYROLL *CAP=AM,AL,GL,0P,ND,SF,1A,BA,LG
$HELLO MGR.PAYROLL

IALTUSER MGRjCAP=AM,AL,GL,0P ,ND,SF,1A,BA,LG
IALTUSER SALLY ;CAP=ND,SF ,IA,BA,LG

Estimate the size of the lcg files, They shou.d be large encugh to contain
at least one day’s worth of transactions. You may want to set the file size
large enough to hold a week’s worth of transactions if weekly audit reporting
from the log file is desired. Build the log file with a record length of 1273
words and & file code of LOG. Decide on a log identifier (log id). The log id
is your link to the logging subsystem. Use the :GETLOG command to associate
the log file with the log id, to tell the subsystem where loqging is to ocecur,
and to assign a password to the logging access. The password is not mandatory.

:BUILD PAD100;REC=128,5,F,ASCI1;DISC=15000,16;CODE=L0G
:GETLOG PADLOG ;LOG=PAD100 ,DISC;PASS=

OFERATIONAL CONSIDERATIONS

The command to actually start the logging process is the :L0OG concole com-
"mand., There is a problem with the console commands in that one must have been
allowed the command in order to issu> it from somewhere othe: than the console.
The contributed utility ALLOWME will grant console command capability to users
other than the owner of the console. The &ccount manager wae allowed the LOG
command. OPERATOR.SYS was allowed both the LIMIT and LOG commands so that
thiese can be contvolled by the batch job running the SYSDUMPS.

tRUN ALLOWME . UTIL.SYS

Allowme Utility V0.0 19 Janvary 80
MGR . PAYROLL ; COMMANDS=L0G

END OF PROGRAM

The jobstream for the SYSDUMPS sete the LIMIT to zero then stops the logqing
processes before a full or partial SYSDUMP. This allows the log file to be saved
on the backup tape. After the SYSDUMP has completed, the jobstreams restart the
logging processes and raise the limits back to normal. It is useful for the
account manager to have access to the 1LOG command and OP capability so that the
lcgging process can be stopped and all files, including databases, can be stored
prior to cleariig the log file. OF capability allows a user to store a datahase
without needing dangerous PM capability.

1JOB PARTIAL,OPERATOR/GPPASS . SYS/SYSPASS
IRUN ALLOWME.UTIL.SYS

ILIMIT 0,0

| CONTINUE

{LOG PADLOG,STOP

IFILE TP;DEV=?

IFILE LP;DEV=LP

1SY SDUMP TP ,kLP

lo/20/83

Y

ILIMIT 2,16

ILOG PADLOC,RESTART
IC0J

The system mancger might need tc alter the system confiouration for the
logging to work on your applicatiun. In the system table section of the SYSDUMP
dialog, the manager defines the maximum number of loqging processes allowed on
the system at any one time and the maximum number of users per loggqing process.
The system manager manual recommends 20 for both of these parameters but that
might not be enough. MWhen assigning these numbers remember that any IMAGE log-
ging performed on the system needs to be taken into account also.

One last operational consideration for the user logging facility is the
OPERATOR.SYS startup procedure. Some shops stream a job and others use a UDC

file. In the logon UDC for the console, the logging processes are restarted via
the :L0G command.

STARTUP

OFTIONS LOGON,LIST

ALLOW OPERATOR.SYS; COMMANDS=CONSOLE

LOG PADLOG,RESTART

HEADODFF ¢

¢ REAMS 10

JOBFENCE 4

QUTFENCE 4

STARTSPOOL LP

ALLOCATE EDITOR.PUB
(etc) ...

LOGGING COMMANDS

There are other loge ng commands that help one uce the facility., :LISTLOG
lists the active log identifiers on the system and their creators. :RELLOG del-

etes log identifiers from the user logging focility, :ALTLOG changes certain
characteristics of the log id such as the log file name, the log destination, or
or the logging password. :SHOWLOGSTATUS displays the status of all currently

active log files. HWhen the CIPER MIT was installed, the log identifiers were
corrupted. The fix was to delete the bad log ids with :RELLOG and add the gqood
ones back with :GETLOG. Fortunately, the log files were intact, just the
1dentifiers were corrupted.

:LISTLOG ({lists active log identifiers))
LOGID CREATOR LOGFILE
PADLOG MGR .PAYROLL PAD100.PUB.PAYROLL
tALTLOG PADLOG; LOG=PAD100,TAPE ({changes log characteristics))
t SHOWLOGSTATUS ({(status display of active log processes))
LOGID USERS STATE RECORDS
PADLOG 0 INACT 223

tRELLOG PADLOG ((deletes a log identifier))
H

THE LOG RECORDS AND THEIR FORMATS 9

There are nine recovrd types in a log file. The format of the log records
vary depending on the record type. Record type one is the orenlog record. It
is generated whenever a user accesses &8 logg9ing system via the OPENLOG call.
The three-record is the closelog record, generated when a user executes the
CLOSELSS intrinsic. There is a start or restart record, code six. Records
coded four and five are the transaction header and trailer record generated by
the BEGINLDG and ENDLOG intrinsics. IMAGE uses these for DBBEGIN and DREND
calls., BEGINLOG and ENDLOG cause the logging buffer to be flushed to disc; so
do DBBEGIN and DBEND calls. The nine record is a crash marker. When logging
is restarted after a system failure while logging was active. recovery occurs
on the log files. The crash marker tells the user loaging subsystem where the
crash occurred so it can recover itself. The user records, code two and seven,
were discussed in the first section,

INTRINSICS USED IN LOGGING

A write call to the logging subsystem uses a mode parameter, This parameter
tells the logging system which action to take if the buffer becomes full prior
to the write request. Mode one functions similar to no-wait 1/0; the process
continues after passing the request to the logging subsystem. Mode zero forces
the process to wait until the loggaing system has processed the write to the log
file. If the buffer is full and the write to the log file in mode zero, the
buffer is written to disc and cleared. The entry is placed into the buffer,
before control is returned to the calling program. The mode is also ugsed for
other calls to the logging system and operates in the same fashion.

Access to the logging facility is obtained via the OPENLOG intrinsic. The
format is OPENLOG index, lugid, password, mode, status. The index returned is
used on subsequent calls to WRITELOG and CLOSELOG. The logid contains the log
identifier, the password, the logging password. The mode indicates the wait
request as discussed above. The status will contain error codes if the OPENLOG
call failed.

The WRITELOG intrinsic format is WRITELOG index, dats, length, mode, status.
The index is the same index returned from the OPENLOG call. The dats is the
user data to be written to the user area of the log record. The length is the
size of the data being prssed. Again the mode is the wait/no-wait request.

The CLOSELOG intrinsic is used to stop access to the logging facility. Its
Its format is CLOSELOG index, mode, status. Index, mode, and status are the
same as for the WKITELOG intrinsic previously described.

CONCLUSION

There are various methods available to users to recover lost interactive
transactions. The method previously cvescribed is one way to approach the task.
IMAGE logging is probably preferred since the programmer does not have to be
involved with recovery. Unfortunately, IMAGE logging is not always the answer.
There are files outside the IMAGE domain, KSAM and MPE files, that are updated
via interactive programs that also need to be recovered. The user logging fac-
ility is an efficient answer tu save those transactions that are critical to the
spplication. The recoverable program structure described may be a useful tech-
nique since the chances of inconsistent results between (wo separate posting
programs are eliminated. There is extra .ime rzquired to develop and maintain
the self-recovering programs, but the time is probably less than having one
program post interactively and another post for recovery. There is a better
chance of data consistency if one program does all the posting, be it inter-
active or recovery,

/

